
1

1

Topic 08

Web Applications Design:
Components, Goals, Concepts

2

Web Design: What Is It About?

Web Design - concepts, principles, and methods that are required 
(needed) to transform 
an understanding of WHAT the WebApp should do
into 
a representation of HOW the WebApp should do.

From WebApp Analysis Model to WebApp Design Model

WHAT ?
HOW ?



2

3

WebApp Design: Art vs Engineering

Jakob Nielsen states: “There are essentially two basic approaches to design: 
1. the artistic ideal of expressing yourself, and 
2. the engineering ideal of solving a problem for a customer.”

Even today, some proponents of agile software development use WebApps as 
poster children for the development of applications based on “limited design.”

However --
• when WebApp content and functions are complex and very complex,
• when the size of the WebApp encompasses hundreds of content objects, functions,  

use scenarios, etc. ,
• when multiple (hundreds and thousands) people become involved in the design, and
• when  expected number of users is high and very high (thousands and millions),
• when the success of the WebApp will have a direct impact on the success of the multi-million 

dollar business and/or users,
WebApp design cannot and should not be taken lightly. 

Conclusion: Design of complex WebApp is a part of well- thought and well-
structured process – software engineering.

4

WebApp Design: Approaches

WebApp Design

Web Graphic User Interface (GUI) 
Design = Interaction Design

Web Development (functions, Web 
services, browsers, PLs, protocols, etc.)

With growing specialization in the information technology field, there is a strong 
tendency to draw a clear line between 

a) Web graphic design, and 
b) Web development (Web programming).

Web graphic interface design is a kind of graphic design intended for development and 
styling of objects of the Internet's information environment to provide them with high-end 
consumer features and aesthetic qualities. 

Web development emphasizes the functional features of WebApp.

Web Design = Web Graphic Interface Design + Web Development



3

5

Analogy:
Computer Game Design Approaches

Game Design

Game Graphic Design 
(Visual Effects)

Game Development 
(Game Engine)

WebApp Design = 

WebApp Graphic Design + WebApp Development

6

Web Applications Design:
Components 



4

7

Main Components of WebApp Design
(WebApp Design Pyramid)

Interaction Design (interface design and aesthetic design = 
layout) = Interaction Model (GUI)

Information Design (content design and navigation design) = 
Information Model

Functional Design (overall behavior and functionality) = 
Functional Model

Technical Design (architectural design and component 
design) = Architectural or Structural Model

Additional useful components:

*) Design Patterns or Templates

**) Design and development Technologies and Tools

8

WebEng Framework Activities 
and 

WebApp Design Process 
(increment-based)



5

9

Web Applications - Graphic User 
Interface Design:

Goals 

10

WebApp Design Goals

Visual appeal.
Design characteristics (e.g., the look and feel of content, interface layout, color coordination, the 
balance of text, graphics and other media, and navigation mechanisms) contribute to visual 
appeal.



6

11

WebApp Design Goals

Navigability. Users should be able to 
understand how to move about the 
WebApp without having to search for 
navigation links or instructions.

12

WebApp Design Goals

Identity. The aesthetic, interface, and navigational design of a WebApp must 
be consistent with the application domain for which it is to be built.

http://www.bls.gov/



7

13

WebApp Design Goals

Consistency.
Content should be constructed consistently
Graphic design (aesthetics) should present a consistent look
Architectural design should establish templates that lead to a consistent hypermedia 
navigation
Navigation mechanisms should be used consistently

14

WebApp Design Goals: 
Do you see a consistency?



8

15

WebApp Design Goals: Simplicity

Simplicity. Rather than feature-bloat, it is better to strive for moderation and 
simplicity (simple interface, simple navigation, simple structure, simple 
hierarchical model, relatively simple functions, etc.).

16

Web Applications – Functionality 
Development:

Goals 



9

17

WebApp Development Goals

Main functions to be 
implemented (search, 
retrieve, calculate, translate, 
convert, links to other 
WebApps, voice, Web 
services, Web security, etc.)

Web 
technologies/platforms to 
be used (AJAX, Mash-Up, 
Web2.0, semantic Web,, 
etc.)

Programming Languages 
to be used (Java, PHP, 
XML, DHTML, etc.)

Web services to be used 
and implemented. Web 
services or  Application 
P i I t f

18

WebApp Design Goals

Robustness. The user expects 
robust content and functions that are 
relevant to the user’s needs.



10

19

WebApp Development Goals

Security. Web application frameworks may come with authentication and 
authorization frameworks, that enable the web server to identify the users of the 
application, and restrict access to functions based on some defined criteria. 

Database access and mapping. Many web application frameworks create a unified 
API to a database backend, enabling web applications to work with a variety of 
databases with no code changes, and allowing programmers to work with higher-level 
concepts.

Cashing. Web caching is the caching of web documents in order to reduce 
bandwidth usage, server load, and perceived "lag". 

20

WebApp Design 
Goals

Compatibility.
Most WebApps will be 
used in a variety of 
environments (e.g., 
different hardware, 
Internet connection 
types, operating 
systems, and 
browsers) and must 
be designed to be 
compatible with each 
of them.



11

21

Web Applications Development
and Quality Issues

22

WebApp Design and Quality Issues

From end user’s point of view:
Performance 
Response time and latency (delay)
Content
WebApp versions (upgrades? How quickly?)
Structural (how well parts of WebApp hold together?)



12

23

Software Design Concepts

24

Software Design: Fundamental Concepts (in CS590)

1. Abstraction still a model of reality (data, procedure, control, etc.); errors or
loss of details may occur

2. Architecture the overall structure of the software

3. Patterns ”conveys the essence” of a proven design solution (best cases, 
re-usable designs)

4. Modularity compartmentalization of data and function

5. Information Hiding controlled interfaces

6. Functional single-minded function and low coupling
Independence

7. Refinement elaboration of detail for all abstractions

8. Re-factoring a reorganization technique that simplifies the design



13

25

In the next several lectures:

Main Components of WebApp Design = Design Models

Interaction Design (interface design and aesthetic design = 
layout) = Interaction Model (GUI)

Information Design (content design and navigation design) = 
Information Model

Functional Design (overall behavior and functionality) = 
Functional Model

Technical Design (architectural design and component 
design) = Architectural or Structural Model

Additional useful components:

*) Design Patterns or Templates

**) Design and development Technologies and Tools

26

Web Applications Design:
Components, Goals, Concepts

Additional information.



14

27

Software Design: Fundamental Concepts

1. Abstraction data, procedure, control
2. Architecture the overall structure of the software
3. Patterns ”conveys the essence” of a proven design 

solution (best cases, re-usable designs))
4. Modularity compartmentalization of data and function
5. Information Hiding controlled interfaces
6. Functional single-minded function and low coupling

Independence
7. Refinement elaboration of detail for all abstractions
8. Re-factoring a reorganization technique that simplifies 

the design

28

1.1. Data Abstraction

doordoor

implemented as a data structure

manufacturermanufacturer
model numbermodel number
typetype
swing directionswing direction
insertsinserts
lightslights

typetype
numbernumber

weightweight
opening mechanismopening mechanism

•Abstraction - allows designers to simplify a problem and focus on solving a problem without being 
concerned about irrelevant lower level details 

•(an example: a class – a named collection of data objects)



15

29

1.2. Procedural Abstraction

openopen

implemented with a "knowledge" of the  
object that is associated with “enter algorithm”

details of enter details of enter 
algorithmalgorithm

•Abstraction - allows designers to simplify a problem and focus on solving a problem without 
being concerned about irrelevant lower level details 

•(en example: procedural abstraction: a subroutine – a named sequence of events) 

30

2. Architecture

““The overall structure of the software and the ways in which thatThe overall structure of the software and the ways in which that
structure provides conceptual integrity for a system.structure provides conceptual integrity for a system.””

Structural properties. This aspect of the architectural design representation defines tThis aspect of the architectural design representation defines the components he components 
of a system (e.g., modules, objects, filters) and the manner in of a system (e.g., modules, objects, filters) and the manner in which those components are which those components are 
packaged and interact with one another. For example, objects arepackaged and interact with one another. For example, objects are packaged to encapsulate packaged to encapsulate 
both data and the processing that manipulates the data and interboth data and the processing that manipulates the data and interact via the invocation of act via the invocation of 
methods.methods.

Extra-functional properties. The architectural design description should address how the desiThe architectural design description should address how the design gn 
architecture achieves requirements for performance, capacity, rearchitecture achieves requirements for performance, capacity, reliability, security, adaptability, liability, security, adaptability, 
and other system characteristics.and other system characteristics.

Families of related systems (reusable architectural building blocks). The architectural The architectural 
design should draw upon repeatable patterns that are commonly endesign should draw upon repeatable patterns that are commonly encountered in the design of countered in the design of 
families of similar systems. In essence, the design should have families of similar systems. In essence, the design should have the ability to reuse architectural the ability to reuse architectural 

building blocks.building blocks.



16

31

System Engineering: A Structural View

System Level 
(World View)

Level of Subsystems (Domains)
(Subsystem or Domain View)

Level of Elements or Components
(Element or Component View)

Level of Sub-elements,  
Details (for ex., attributes) 
(Detail View)

System

Sub.Sys. A Sub.Sys. B Sub.Sys. N

A subsystem

A component

A detail (attribute)

DataFunctions Links Inputs Outputs …...

…...

…...

32

Conceptual (Logic) Architecture 
of the SafeHomeAssured.com WebApp



17

33

3. Patterns

Design Pattern Template:

Pattern name describes the essence of the pattern in a short but expressive name 
Intent describes the pattern and its functions
Also-known-as lists any synonyms for the pattern
Motivation provides an example of the problem 
Applicability notes specific design situations in which the pattern is applicable
Structure describes the classes that are required to implement the pattern
Participants describes the responsibilities of the classes that are required 

to implement the pattern
Collaborations describes how the participants collaborate to carry out their responsibilities
Consequences describes the “design forces” that affect the pattern and the potential 

trade-offs that must be considered when the pattern is implemented
Related patterns cross-references related design patterns

*) Patterns-based SE, patterns-based analysis, patterns-based software development, 
pattern languages, etc. – still a lot of research needed, a lot of Ph.D. dissertations

34

3a. Patterns (details)

A design pattern is a general reusable solution to a commonly occurring problem in software design. 

A design pattern is not a finished design that can be transformed directly into code. 

It is a description or template for how to solve a problem that can be used in many different situations. 



18

35

3a. Patterns (details)

36

3a. Patterns (details)



19

37

4. Modular Design
(easier to build, easier to change, easier to fix…)

easier to build, easier to change, easier to fix ..

*) 1969, Boeing 747

*) modern cars (standard modules)

*) reusable learning objects (modules of online 
courses)

Microsoft Design Center:

Industrialization and modular object-oriented 
software development has theoretically made it 
easy to tear things down and replace them. 

38

Sizing Modules: Two Views

MODULE

What's 
inside??

How big 
is it??

Source: http://www.sltf.com/ssm/ssm.htm#Modules

One important feature of a module is 
its length. 

Longer is not better. 

Compilation time is expensive; the 
longer the module, the longer it takes 
to compile. Most program changes that 
require a recompilation of a module are 
for minor changes, not involving lots of 
code lines. 

Try to restrict your modules to 400 
lines of code; optimal length: 60-300 
LOC per module

If the module needs to be longer, split it 
into multiple modules, all with a related 
name. 



20

39

Software Modularity: Trade-offs

What is the "right" number of modules What is the "right" number of modules 
for a specific software design?for a specific software design?

optimal numberoptimal number
of modulesof modules

cost ofcost of
softwaresoftware

number of modulesnumber of modules

modulemodule
integrationintegration

costcost

module development costmodule development cost

40

System Level

Level of Subsystems (Domains)

Level of Components

Level of elements

Modular Approach to 
Learning Content Design:



21

41

BTW: Pedagogical Patterns (details)

Pedagogical Patterns are high-level 
patterns that have been recognized 
in many areas of training and 
pedagogy such as group work, 
software design, human computer 
interaction, education and others. 

The concept is an extension of pattern 
languages. In both cases, the patterns 
seek to foster best practices of 
teaching.

You may think about patterns as some 
kind of metadata – a top-level 
description of data about data. 

42

5. Information Hiding
(or, Encapsulation in Programming)

modulemodule
controlledcontrolled
interfaceinterface

"secret""secret"

•• algorithmalgorithm

•• data structuredata structure

•• details of external interfacedetails of external interface

•• resource allocation policyresource allocation policy

clientsclients

a specific design decisiona specific design decision



22

43

Why Information Hiding?

leads to encapsulation—an attribute of high quality design
results in higher quality software
limits the global impact of local design decisions
emphasizes communication through well-structured and controlled interfaces
reduces the likelihood of “side effects”
discourages the use of global data

Advantages of Encapsulation in Programming

Large software programs may be split into manageable modules
Implementation details are hidden (isolated); as a result, no need to waste your time
Subprograms and programs become more portable, and, probably, re-usable by external users
Development time is shortened due to well-written, well-structured, well-tested sub-programs 
(functions, lists, files, etc.) 

44

6. Functional Independence

Functional independence is achieved by developing modules with "single-minded" function
and an "aversion" (disliking) to excessive interaction with other modules.

Cohesion is an indication of the relative functional strength of a module.
A cohesive module performs a single task, requiring little interaction with other components 
in other parts of a program. Stated simply, a cohesive module should (ideally) do just one 
thing.

Coupling is an indication of the relative interdependence among modules.
Coupling depends on the interface complexity between modules, the point at which entry or 
reference is made to a module, and what data pass across the interface.



23

45

System Concepts

Once we have recognized something as a system, how do we understand the system?

Important system concepts include:

Modularity is dividing a system into parts/chunks/modules of relatively uniform 
size.

Decomposition is the process of breaking down a system into its component 
parts. 

Coupling is the extent to which subsystems are dependent on each other. 

Cohesion is the extent to which a system or a subsystem performs a single
function.

Open system: a system that interacts freely with its environment, taking input 
and returning output.

Closed system: a system that is cut off from its environment and does not interact 
with it.

46

7. Stepwise Refinement

open

walk to door;
reach for knob;

open door;

walk through;
close door.

repeat until door opens
turn knob clockwise;
if knob doesn't turn, then

take key out;
find correct key;
insert in lock;

endif
pull/push door
move out of way;
end repeat

Object

Activity Diagram (textual form)

Instructions (code)



24

47

WebApp Design: Main Components

The WebApp Design Model encompasses 
1. content, 
2. aesthetics (artistic features), 
3. interface, 
4. architecture (structural components), 
5. navigation (functions), and 
6. component-level (objects) design issues.

The design model provides sufficient information for the WebE team to 
construct the final WebApp

Alternative solutions are considered, and the degree to which the 
current WebApp Design Model will lead to an effective implementation 
should be continuously assessed

48

Conceptual Architecture

Provides an overall structure for the WebApp design

Affects all later increments – so important for it to developed in the context of 
the full set of likely increments

Represents the major functional and information components for the 
WebApp and describes how these will fit together

Depends on the nature of the WebApp, but in every case, it should ensure a 
sound integration between the WebApp information and the WebApp 
functionality.



25

49

Developing the architecture of WebApp

How do we achieve an effective balance between information and functionality in the conceptual 
architecture? 

A good place to start is with workflows or functional scenarios (which are an expression of the system 
functionality) and information flows

As a simple example, consider the following set of key functionalities for SafeHomeAssured.com
• Provide product quotation
• Process security system order
• Process user data
• Create user profile
• Draw user space layout
• Recommend security system for layout
• Process monitoring order
• Get and display account info
• Get and display monitoring info 
• Customer service functions (to be defined later)
• Tech support functions (to be defined later)

50

Developing the architecture of WebApp

From these key functionalities we can identify the following partial list of functional 
subsystems:

• UserManagement. Manages all user functions, including user registration, authentication and profiling, 
user-specific content, and interface adaptation and customization.

• ProductManagement. Handles all product information, including pricing models and content management.
• OrderHandling. Supports the management of customers’ orders.
• AccountAdministration. Manages customers’ accounts, including invoicing and payment.
• SecuritySystemSupport. Manages users’ space layout models and recommends security layouts.
• SecuritySystemMonitoring. Monitors customers’ security systems and handles security events.

And, of course, there are overall management subsystems:
• ClientInterface. Provides the interface between users and the other subsystems, as required to satisfy 

users needs.
• SystemMaintenance. Provides maintenance functionality, such as database cleaning.



26

51

Languages for Logic Modeling of WebApp

HDM - W2000 
RMM 
OOHDM
ARANEUS 
STRUDEL 
TIRAMISU 
WebML
Hera 
UML Web Application Extension 
UML-based Web Engineering (UWE) 
ACE 
WebArchitect
OO-H

52

Technical Architecture

Shows how the conceptual architecture can be mapped into specific technical 
components

Any decision made about how one component might map into the technical architecture 
will affect the decisions about other components

• For example, the WebE team may choose to design SafeHomeAssured.com in a way that stores product 
information as XML files. Later, the team discovers that the content management system doesn’t easily 
support access to XML content, but rather assumes that the content will be stored in a conventional 
relational database. One component of the technical architecture conflicts with constraints imposed by 
another component. 


