Topic 08

Web Applications Design:
Components, Goals, Concepts

Web Design: What Is It About?

= Web Design - concepts, principles, and methods that are required
(needed) to transform

an understanding of WHAT the WebApp should do
into
arepresentation of HOW the WebApp should do.

= From WebApp Analysis Model to WebApp Design Model

WebApp Design: Art vs Engineering

m Jakob Nielsen states: “There are essentially two basic approaches to design:
1. the artistic ideal of expressing yourself, and
2. the engineering ideal of solving a problem for a customer.”

= Even today, some proponents of agile software development use WebApps as
poster children for the development of applications based on “limited design.”

= However --
« when WebApp content and functions are complex and very complex,

« when the size of the WebApp encompasses hundreds of content objects, functions,
use scenarios, etc. ,

« when multiple (hundreds and thousands) people become involved in the design, and
« when expected number of users is high and very high (thousands and millions),

« when the success of the WebApp will have a direct impact on the success of the multi-million
dollar business and/or users,

WebApp design cannot and should not be taken lightly.

Conclusion: Design of complex WebApp is a part of well- thought and well-
structured process — software engineering.

WebApp Design: Approaches

WebApp Design

~

Web Graphic User Interface (GUI) Web Development (functions, Web
Design = Interaction Design services, browsers, PLs, protocols, etc.)

With growing specialization in the information technology field, there is a strong
tendency to draw a clear line between

a) Web graphic design, and

b) Web development (Web programming).

Web graphic interface design is a kind of graphic design intended for development and
styling of objects of the Internet's information environment to provide them with high-end
consumer features and aesthetic qualities.

Web development emphasizes the functional features of WebApp.

Web Design = Web Graphic Interface Design + Web Development

4

WebApp Design =

WebApp Graphic Design + WebApp Development

Analogy:
Computer Game Design Approaches

Game Design

~

Game Graphic Design Game Development
(Visual Effects) (Game Engine)

Web Applications Design:
Components

Main Components of WebApp Design
(WebApp Design Pyramid)

user Interaction Design (interface design and aesthetic design =
layout) = Interaction Model (GUI)

Information Design (content design and navigation design) =
Information Model

Interface
design

Aesthetic design

Content design

Functional Design (overall behavior and functionality) =

/ Navigation design \ Functional Model
/ Functional design \
/ Architecture design \ Technical Design (architectural design and component
design) = Architectural or Structural Model
/ Component design \
/ . \ Additional useful components:
technology

*) Design Patterns or Templates

**) Design and development Technologies and Tools

WebEng Framework Activities
and
WebApp Design Process
(increment-based)

basting

Tt 7 detated w3 datated
recuim ey and emcpamments and

Imo«mef Autnan ant of

et
g vomn srem for

frrrts ananui
oo 1 Archite chure
Tocd rechasciuce)

Eatatlihr enf of
bask anchilectune

archifectune aiutechoe

e e,
deagn

Interace Design
|sestratic Design
[Content Design
[N avigation Design

Functicnal Design

[Cameanant Desian

Web Applications - Graphic User
Interface Design:

Goals

WebApp Design Goals

m Visual appeal.
Design characteristics (e.g., the look and feel of content, interface layout, color coordination, the
balance of text, graphics and other media, and navigation mechanisms) contribute to visual
appeal.

WebApp Designh Goals

Computer Science

«d Information Systems

= Navigability. Users should be able to Wetrrtey ey 2, . —
understand how to move about the i o= =
WebApp without having to search for o

navigation links or instructions.

Download Resources
Baftranre Updates

5 Counve
3 ndurs Prigram Tty

Programa

G Cataer o P}

CELIS G Program (detadn.|
C5 Tovw-0uF Crwrawn liap
CF ot Pragines St

700 2000 At e Vaar
Benwie of CTH Courben
Saarch Bradar Crers

From 2 oy
perery Thviye
wrekws Server 200
i e 53 A i |

e el e i |

S

11

= |dentity.

WebApp Design Goals

The aesthetic, interface, and navigational design of a WebApp must
be consistent with the application domain for which it is to be built.

and Science
Wige Evtrmates.
Ocoopaton Employment Mactan Mo Maan Al Maan RSE
Code w ey Haurty [r:] 1]
>
150000 103,53 355 o STTTAD 12%
- 1% @ = s 98 360 6%
-
o 5620 e %0 e s
-.
=100 12 M1 S5 00 33600 %
-m
o 0 L Bam e FIna0 4%
151081 “rn 2148 i 30 16%
151081 000 {1 o 00 %
151081 1420 WA M 75350 1%
1507 2.3 609 are 78000 16%
http://www.bls.gov/
1810 asm ITEL Y a0 a%
15100 LA 0w 0T AN 5%
an bl LR 4 i #E70 1%
wan 146 jaras) MM om0 %
152041 0 31T 380 579090 213I%

WebApp Design Goals

m Consistency.
= Content should be constructed consistently
= Graphic design (aesthetics) should present a consistent look

= Architectural design should establish templates that lead to a consistent hypermedia

navigation
= Navigation mechanisms should be used consistently

BRADLEY ot e

s Stuc

13

WebApp Design Goals:
Do you see a consistency?

Computer Science

et oty 34 Missien
£
Laras e

Information System

14

m Simplicity.

WebApp Design Goals: Simplicity

Rather than feature-bloat, it is better to strive for moderation and

simplicity (simple interface, simple navigation, simple structure, simple
hierarchical model, relatively simple functions, etc.).

et e
it DD O e S dEcd @

g

Wb s Vi M B Smers Gmal o

EE
—rry

tm&.ﬂﬁ.@n@—
e :'-'_-h'-' LElsih.lG _r:'onrmr.'r HIRF F_AP LEASE CARS

Lt Tey o wd e et

waHy HHHHH !

| -year deall

15

Web Applications — Functionality

Development:

Goals

16

WebApp Development Goals

m Main functions to be
implemented (search,
retrieve, calculate, translate,
convert, links to other
WebApps, voice, Web
services, Web security, etc.)

TIAD 304 9 Smueg
“dnd ME Tasaeasy

m Web
technologies/platforms to
be used (AJAX, Mash-Up,
Web2.0, semantic Web,,
etc.)

m Programming Languages
to be used (Java, PHP,
XML, DHTML, etc.)

m Web services to be used
and implemented. Web
services or Application

WebApp Design Goals

SOurceForge PO

m Robustness. The user expects G
robust content and functions that are #OustaDag hea o
relevant to the user’s needs.

18

WebApp Development Goals

m Security. Web application frameworks may come with authentication and
authorization frameworks, that enable the web server to identify the users of the
application, and restrict access to functions based on some defined criteria.

m Database access and mapping. Many web application frameworks create a unified
API to a database backend, enabling web applications to work with a variety of
databases with no code changes, and allowing programmers to work with higher-level

concepts.

m Cashing. Web caching is the caching of web documents in order to reduce
bandwidth usage, server load, and perceived "lag".

19
. Topica -
WebApp Design e
Goals IT managers find Internat Explorer 9 fails to render websites and web
applications
IT managers find Internet Explorer 9 falls to render websites
vy o8 ey 211 1190
Compatibility. Vit the sevriogument af ntornet Faplarns 8.8 neas completion, .
X € tearmed of sites and
Most WebApps will be riestons e ceampuini e f
used in a variety of S crosch rebases €4 o yrs s, et e e e
environments (e.g., 768 o choe f S, <k o s 1 Ay Sai R, /
d|f‘ferent hardware Opera, Mazia Fretax ani ogie CRrome. INQOWS’
re, PP S —— Internet
Internet connection e 40 8 ooty ot o wios
. S0MWANE CAMOATY Saled “Same wWeEalEs may ol
types, operating Comecty o wers earrachy i WSows Pabros Expns ot 1 WecEws Explorer 0
orned Explerer § Bela o &] arker version of
systems, and e Exsare na e e e
browsers) and must comecty #0215 ok e ~ e Exporee
be designed to be v sk fucfipvragiyiradsiangy
compatible with each s 3omemg SurSeveipes had never con 60N
of them. petore” _
Anomer IT arecisr 8ai B had Experenced msuss, But Learn how it can help
Im—:r |.=uu1l e sched and he now waes EB e yo ur bus'l ness }
‘standard 8cross his orpansaton. “hothing was fiapged
a8 8 probisn i sty of tor manageeenl psscns. | Popular Websites incampatible In internet Explorer
Quess e Juys ust made & hazpes. Our stansard i €S o
ana has been for some bme -
Heraeve, Meroao® has destifnd 4 bl of sver 1100 .
ALCerdng 1o B8 seppart gape % LD 0 LY
20

10

Web Applications Development
and Quality Issues

21
WebApp Design and Quality Issues
Global site understandability
B Ondine feedback and help features
Usability Interface and aesthetic features
Special features
Searching and reirieving capability
L < Navigation and browsing features
Functionality Application domain-related features
Web Correct link processing
pplicati Reliability Error recovery
quality User input validation and recovery
Response time performance
Efficiency é Page generation speed
Graphics generation speed
Ease of correction
intainability E Extensibility
From end user’s point of view:
m Performance
m Response time and latency (delay)
[] Content
m WebApp versions (upgrades? How quickly?)
m Structural (how well parts of WebApp hold together?)
22

11

Software Design Concepts

23

Software Design: Fundamental Concepts (in CS590)

. Abstraction

still a model of reality (data, procedure, control, etc.); errors or
loss of details may occur

. Architecture the overall structure of the software

. Patterns

. Re-factoring

"conveys the essence” of a proven design solution (best cases,
re-usable designs)

. Modularity compartmentalization of data and function

. Information Hiding controlled interfaces

. Functional single-minded function and low coupling
Independence

. Refinement elaboration of detail for all abstractions

a reorganization technique that simplifies the design

24

12

In the next several lectures:

Main Components of WebApp Design = Desigh Models

user Interaction Design (interface design and aesthetic design =
layout) = Interaction Model (GUI)

Information Design (content design and navigation design) =
Information Model

Interface
design

Aesthetic design

Content design

Functional Design (overall behavior and functionality) =

Navigation design \ Functional Model
Functional design \
Architecture design \ Technical Design (architectural design and component

design) = Architectural or Structural Model
Component design \

Additional useful components:
technolo .
el *) Design Patterns or Templates

**) Design and development Technologies and Tools

25

Web Applications Design:
Components, Goals, Concepts

Additional information.

26

13

Software Design: Fundamental Concepts

1. Abstraction
2. Architecture
3. Patterns

4. Modularity

5. Information Hiding

6. Functional
Independence

7. Refinement

8. Re-factoring

data, procedure, control
the overall structure of the software

"conveys the essence” of a proven design
solution (best cases, re-usable designs))

compartmentalization of data and function
controlled interfaces
single-minded function and low coupling

elaboration of detail for all abstractions

a reorganization technique that simplifies
the design

27

1.1. Data Abstraction

— inserts

(" door)

manufacturer
model number
type

swing direction

lights
type
number
weight
opening mechanism

\\ J

implemented as a data structure

Abstraction - allows designers to simplify a problem and focus on solving a problem without being
concerned about irrelevant lower level details

(an example: a class — a named collection of data objects)

28

14

1.2. Procedural Abstraction

open

s of enter
algorithm

implemented with a "knowledge" of the
object that is associated with “enter algorithm”

Abstraction - allows designers to simplify a problem and focus on solving a problem without
being concerned about irrelevant lower level details

(en example: procedural abstraction: a subroutine — a named sequence of events)

29

2. Architecture

“The overall structure of the software and the ways in which that
structure provides conceptual integrity for a system.”

Structural properties. This aspect of the architectural design representation defines the components
of a system (e.g., modules, objects, filters) and the manner in which those components are
packaged and interact with one another. For example, objects are packaged to encapsulate
both data and the processing that manipulates the data and interact via the invocation of
methods.

Extra-functional properties. The architectural design description should address how the design
architecture achieves requirements for performance, capacity, reliability, security, adaptability,
and other system characteristics.

Families of related systems (reusable architectural building blocks). The architectural
design should draw upon repeatable patterns that are commonly encountered in the design of
families of similar systems. In essence, the design should have the ability to reuse architectural

building blocks.

30

15

System Engineering: A Structural View

Level
(World View)
/d/&
Level of (Domains)
[T [T1 (Subsystem or Domain View)

Level of

(Element or Component View)

Level of Sub-elements,

. = (Detail View)
[| | | |
EEE EEEE SN EEEE EEEEEEEE EEEE RN
31
Conceptual (Logic) Architecture
of the SafeHomeAssured.com WebApp
cirbasan | L'“”,
32

16

3. Patterns

Design Pattern Template:

Pattern name
Intent
Also-known-as
Motivation
Applicability
Structure
Participants

Collaborations

describes the essence of the pattern in a short but expressive name
describes the pattern and its functions

lists any synonyms for the pattern

provides an example of the problem

notes specific design situations in which the pattern is applicable
describes the classes that are required to implement the pattern

describes the responsibilities of the classes that are required

to implement the pattern

describes how the participants collaborate to carry out their responsibilities

Consequences describes the “design forces” that affect the pattern and the potential
trade-offs that must be considered when the pattern is implemented
Related patterns cross-references related design patterns

*) Patterns-based SE, patterns-based analysis, patterns-based software development,
pattern languages, etc. — still a lot of research needed, a lot of Ph.D. dissertations

33

3a. Patterns (details)

Nares Dascriptian

Cnstiensl patrarni

k700

Ensuee st nesources are proper retased by Byng them o

Structural pastema

ster ot W e

A design pattern is a general reusable solution to a commonly occurring problem in software design.

A design pattern is not a finished design that can be transformed directly into code.

In Design In Code
Patems | Complee/
s es L
o Y W
Yes o o
L] e L
Mo N L]
s e o
ey e e
e gl port of sece Ho e]
Mo L]
 inpeher that coukint oherwise bec e o incor Ve e]
Tes Tes L
reat sl ojects and compe: Yes o3 N
Tes e o
v et Mo
Yes o Mo
Yes o Ha

In POSAT In PoEAA

Itis a description or template for how to solve a problem that can be used in many different situations.

iEEF

E EFEF

FEEEFETFE

34

17

Behavioral pattarns

3a. Patterns (details)

=

along e chiain Ul an coyect handies £
 Encapsudate a reguest as an otyect.

qurue o log requessts, and support ndatle operations

='pilnrk =t
r bty g s
oy ko e
A Maemabve i Ihe endstng Memento paers
. state fater
designed 1o 3¢t % 3 defacit valoe of an et
rosbed
ferT— e
ges. The o

Recombinable business ok in a bociean fastion

changng the skgonSr's stuctre

whh & pperates

35

Concurmancy pamarny

3a. Patterns (details)

Acove Ceyect
edegPrperies_{Co i
Evert-Based e
Aecteeont
Bakry
A saiched bedore e cpenton can be eertuted.
Mo ctyect A mentorin by et of viiaties.
Scheduer The scheduer y
Theead Tipcaly, ere ae
e oy mere b than Baeas
Theead-specte sorage
: sty by e o rove gt The
Lack Yock” tn 3 nesturce, o
P — g™
The paem,

36

18

4. Modular Design
(easier to build, easier to change, easier to fix...)

easier to build, easier to change, easier to fix .

; _/

A Changing Culture

[Achmorn cuve Iy
V]

*) 1969, Boeing 747
*) modern cars (standard modules)

Microsoft Design Center:

Industrialization and modular object-oriented
software development has theoretically made it
easy to tear things down and replace them.

*) reusable learning objects (modules of online
courses)

37

Sizing Modules: Two Views

One important feature of a module is
its length.

What . Longer is not better.
] inside 1

Compilation time is expensive; the
longer the module, the longer it takes
to compile. Most program changes that
require a recompilation of a module are
for minor changes, not involving lots of
code lines.

Try to restrict your modules to 400
lines of code; optimal length: 60-300
LOC per module

If the module needs to be longer, split it
into multiple modules, all with a related
name.

Source: http://www.sltf.com/ssm/ssm.htm#Modules 38

Software Modularity: Trade-offs

What is the "'right"" number of modules

for a specific software design?

cost of
software

A module development cost

optimal number
of modules _/

~ module
integration
cost

number of modules

39

Level

Curriculum

Courses

aBalu
e el ol

Classes |

Modular Approach to
Learning Content Design:

Lessons

Objects)

<
(Reusable Learning H:l] ‘%‘ O %’ - o
10

Onling Databa 1 of H

Know aigs Bullding
Bloch and Leaming
Prace n ﬁ.lllﬂll'lg Bockr

uuuuu

’ System Level ‘

’ Level of Subsystems (Domains) ‘

Level of Components

Level of elements

40

20

BTW: Pedagogical Patterns (details)

Pedagogical Patterns are high-level
patterns that have been recognized
in many areas of training and
pedagogy such as group work,
software design, human computer
interaction, education and others.

o
1=

=

2

[

[-¥

- 1o the FLOPDS
3 e Langusges of Program Gesign.
=B 12 be published by doy

Moot us..

=]

[T

[

o

&

¥

The concept is an extension of pattern
languages. In both cases, the patterns
seek to foster best practices of

teaching.

from Deferect Parspectivns

Active Loaming

You may think about patterns as some
kind of metadata — a top-level
description of data about data.

Pattorna for Experiantisl Laarring

Pastarns for Gaining Differest Parspactions

PRP Buttens

41

5. Information Hiding
(or, Encapsulation in Programming)

module

= controlled
interface

clients " "
secret

a specific design decision
42

Why Information Hiding?

and an "aversion" (disliking) to excessive interaction with other modules.

Cohesion is an indication of the relative functional strength of a module.

= A cohesive module performs a single task, requiring little interaction with other components
in other parts of a program. Stated simply, a cohesive module should (ideally) do just one
thing.

Coupling is an indication of the relative interdependence among modules.

= Coupling depends on the interface complexity between modules, the point at which entry or
reference is made to a module, and what data pass across the interface.

m |eads to encapsulation—an attribute of high quality design

m results in higher quality software

= limits the global impact of local design decisions

m emphasizes communication through well-structured and controlled interfaces

= reduces the likelihood of “side effects”

m discourages the use of global data

Advantages of Encapsulation in Programming
= Large software programs may be split into manageable modules
= Implementation details are hidden (isolated); as a result, no need to waste your time
m Subprograms and programs become more portable, and, probably, re-usable by external users
m Development time is shortened due to well-written, well-structured, well-tested sub-programs
(functions, lists, files, etc.)
43
6. Functional Independence
m Functional independence is achieved by developing modules with "single-minded" function

44

22

System Concepts

Once we have recognized something as a system, how do we understand the system?

Important system concepts include:

Modularity is dividing a system into parts/chunks/modules of relatively uniform
size.

Decomposition is the process of breaking down a system into its component

parts.
Coupling is the extent to which subsystems are dependent on each other.
Cohesion is the extent to which a system or a subsystem performs a single
function.
Open system: a system that interacts freely with its environment, taking input

and returning output.

Closed system: a system that is cut off from its environment and does not interact
with it.

45

7. Stepwise Refinement

Object

Activity Diagram (textual form)

repeat until door opens

turn knob clockwise;

if knob doesn't turn, then
take key out;
find correct key;
insert in lock;

endif

pull/push door

move out of way;

end repeat

Instructions (code)

46

23

WebApp Design: Main Components

m The WebApp Design Model encompasses

1. content,

. aesthetics (artistic features),

. interface,

. architecture (structural components),

. havigation (functions), and

. component-level (objects) design issues.

O WN

The design model provides sufficient information for the WebE team to
construct the final WebApp

Alternative solutions are considered, and the degree to which the
current WebApp Design Model will lead to an effective implementation
should be continuously assessed

47

Conceptual Architecture

Provides an overall structure for the WebApp design

Affects all later increments — so important for it to developed in the context of
the full set of likely increments

Represents the major functional and information components for the
WebApp and describes how these will fit together

Depends on the nature of the WebApp, but in every case, it should ensure a
sound integration between the WebApp information and the WebApp

functionality.

48

24

Developing the architecture of WebApp

How do we achieve an effective balance between information and functionality in the conceptual
architecture?

A good place to start is with workflows or functional scenarios (which are an expression of the system
functionality) and information flows

As a simple example, consider the following set of key functionalities for SafeHomeAssured.com
* Provide product quotation
* Process security system order
Process user data
* Create user profile
» Draw user space layout
Recommend security system for layout
* Process monitoring order
+ Getand display account info
+ Getand display monitoring info
« Customer service functions (to be defined later)
« Tech support functions (to be defined later)

49

Developing the architecture of WebApp

From these key functionalities we can identify the following partial list of functional
subsystems:

* UserManagement. Manages all user functions, including user registration, authentication and profiling,
user-specific content, and interface adaptation and customization.

* ProductManagement. Handles all product information, including pricing models and content management.

* OrderHandling. Supports the management of customers’ orders.

* AccountAdministration. Manages customers’ accounts, including invoicing and payment.

* SecuritySystemSupport. Manages users’ space layout models and recommends security layouts.

« SecuritySystemMonitoring. Monitors customers’ security systems and handles security events.

And, of course, there are overall management subsystems:

< ClientInterface. Provides the interface between users and the other subsystems, as required to satisfy
users needs.

« SystemMaintenance. Provides maintenance functionality, such as database cleaning.

50

25

Languages for Logic Modeling of WebApp

HDM - W2000

RMM

OOHDM

ARANEUS

STRUDEL

TIRAMISU

WebML

Hera

UML Web Application Extension
UML-based Web Engineering (UWE)
ACE

WebArchitect

OO-H

o000 0000000oo

51

Technical Architecture

Shows how the conceptual architecture can be mapped into specific technical
components

Any decision made about how one component might map into the technical architecture
will affect the decisions about other components

* For example, the WebE team may choose to design SafeHomeAssured.com in a way that stores product
information as XML files. Later, the team discovers that the content management system doesn’t easily
support access to XML content, but rather assumes that the content will be stored in a conventional
relational database. One component of the technical architecture conflicts with constraints imposed by
another component.

52

26

